
UCRL-JC-116038
Rev. 1

Fission Energy and Systems Safety Program
FESSP

Lawrence Livermore National Laboratory

Evaluating Software for Safety
Systems in Nuclear Power Plants

Prepared by

J. Dennis Lawrence, Warren L. Persons, and G. Gary Preckshot
Computer Safety & Reliability Group
Lawrence Livermore National Laboratory

John Gallagher
Human Instrumentation and Controls Branch
Office of Nuclear Reactor Regulation
U. S. Nuclear Regulatory Commission

Prepared for

U.S. Nuclear Regulatory Commission

This work was supported by the United States Nuclear Regulatory Commission under a Memorandum of
Understanding with the United States Department of Energy, and performed under the auspices of the
U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and shall
not be used for advertising or product endorsement purposes.

Evaluating Software for Safety Systems
in Nuclear Power Plants

J. Dennis Lawrence, Warren L. Persons, and G. Gary Preckshot
Lawrence Livermore National Laboratory

John Gallagher
U. S. Nuclear Regulatory Commission

Manuscript Date: April 8, 1994

1

1. Background

Commercial nuclear reactor technology has been in existence for more than forty years.
At the end of 1992, 419 commercial reactors were in operation, with an additional 59
under construction [1]. (The U.S. numbers are 112 and 6, respectively.) Compared with
other technologies, reactor technology has had an excellent safety record, and there is
considerable interest in continuing and improving upon that record.

Existing reactors generally use separate instrumentation and control (I&C) systems for
control and for protection—indeed, this is mandated by law in the United States. The
protection systems are relied upon to initiate required safety functions following
abnormal transient or accident conditions. Both types of I&C systems have historically
used analog systems coupled with either electro-mechanical relay logic or hardwired
solid-state logic as the basic technology.

In the United States, most reactors have been designed individually, built by a company
specializing in reactor technology, owned and operated by an electric power utility, and
regulated by the U.S. Nuclear Regulatory Commission (NRC). Regulation is limited to
assuring public safety to the maximum extent possible. Regulation has included the
granting of a construction permit before construction of a reactor begins, granting of an
operating license after construction, and inspections during construction and operation.
Public hearings are held before issuing the construction permit and operating license.

A number of changes are taking place both in I&C technology and in regulation. New
reactor designs will permit reuse of a design at multiple sites. At the same time, I&C
technology is moving toward the use of digital computers. Moreover, U.S. law has
expanded the number of methods of licensing. In the future, the NRC may issue a
design-standardized certification for a particular reactor design. A utility wishing to
build a reactor will obtain a combined construction and operating license, and may use
any certified design. Once built, the plant can begin operation without additional
mandatory public hearings, but not until completion of certification inspections, tests
and analyses against approved acceptance criteria.

As part of the design certification, the applicant for a standard design certification will
submit a set of inspections, tests, analyses and acceptance criteria (ITAAC) such that if
the inspections, tests and analyses are carried out, and they meet the acceptance criteria,
the plant as constructed is considered to be safe. The utility/license applicant will carry
out the ITAAC, and the NRC will ensure that it has been properly implemented using
an audit process.

A design certification will be in force for fifteen years and can be renewed at the end of
that period. A plant constructed using such a design might well operate for forty years,
with the possibility of plant license renewal for an additional twenty years. The result is
that a plant built to a design certified today may still be operating nearly a century from
now. Thus, it is imperative that the design be safe!

The safety of the design is considered to be a relatively routine determination for many
aspects of the nuclear power plant—i.e., concrete and steel technology is reasonably

2

well understood, fairly stable, and not likely to change over the next fifteen years.
However, a potential area of concern is computer-based I&C systems that control the
plant and initiate the plant protection systems, both because their use in U.S. nuclear
power plants is relatively new and because the technology is changing rapidly. The
computer-based safety systems are of particular concern to the NRC.

The Lawrence Livermore National Laboratory (LLNL) has been working on aspects of
nuclear power technology for nearly half a century, both for the Department of Energy
and its predecessors, and for the NRC. This includes work on seismic analysis,
transportation of nuclear materials, nuclear physics, fusion power, long-term waste
storage, isotope separation, radiation health issues, digital I&C issues, and the like.

Much of the experimental work in physics conducted at LLNL requires the use of
automated control systems, so the Laboratory has been building some of the world’s
most advanced digital control systems for decades. Examples include the Magnetic
Fusion Test Facility, the Nova facility and the Atomic Vapor Laser Isotope Separation
facility.

In 1991, LLNL was asked by the NRC to provide technical assistance in various aspects
of computer technology that apply to computer-based reactor protection systems. This
has involved reviewing safety aspects of new reactor designs and providing technical
advice on the use of computer technology in systems important to reactor safety. The
latter includes determining and documenting proposed regulatory criteria for the NRC
on the development and implementation of digital computer safety systems. These
aspects include data communications, formal methods, testing, software hazards
analysis, verification and validation, computer security, performance, software
complexity, and others. One topic—software reliability and safety—is the subject of this
paper.

2. Methodology

The purpose of the software reliability task has been for LLNL to assist the NRC in
understanding the state of the art in assessing the reliability of the software for a
computer-based reactor protection system. Three separate activities were carried out:
assess the status of national and international standards that relate to software
reliability and safety, obtain advice from technical experts in software reliability and
safety, and assess the best current practice in industry. The first activity was reported in
[2], so is not discussed further here.

2.1. Technical Experts

In FY 1992, LLNL sponsored a small workshop in which four leading software experts
were brought together with members of the NRC staff to give their opinions on
methods and techniques for the development of safety-critical software, and to discuss
the reliability and safety of reactor software. Experts were chosen based on reputation,
technical expertise, availability, and interest in the NRC’s problem in order to achieve
the shared goal of obtaining a variety of viewpoints. They were:

3

• Ricky Butler, NASA Langley.

• Nancy Leveson, University of California at Irvine.1

• Bev Littlewood, City University of London.

• John Rushby, Stanford Research Institute.

The workshop was held in July 1992 in San Diego, California, and lasted a day and a
half. A report on the workshop is available from LLNL [3].

2.2. Commercial Practice

In FY 1993, the investigation was expanded to study the best contemporary industry
practices. Specific organizations within three corporations were chosen based on
reputation, availability, and willingness to participate. They were:

• Computer Sciences Corporation (CSC), Systems Engineering Division.

• International Business Machines, Federal Systems Company (IBM/FSC), Space
Shuttle Project.2

• TRW, Ballistic Missile Defense Division; Army WWMCCS Information System
Project; and Universal Network Architecture Services Project. (Three projects within
TRW were included in the study.)

Supplementary conversations were held with representatives of the NASA Software
Engineering Laboratory and the American Institute of Aeronautics and Astronautics
(AIAA) Software Reliability Project.

Interviews and discussions with the three organizations were directed at “what works.”
Specifically, the discussions began with the following questions and expanded from
there:

1. What are the most important obstacles to producing highly reliable software for
use in safety-related applications?

2. Why is your company successful at producing highly reliable software?

3. What evidence exists that the methods work?

4. What are the most important lessons your company has learned about producing
highly reliable software?

The results of the interviews and discussions were combined into a set of principles
which were termed “design factors.” This list was then discussed with a fourth
company as a validation check. This company, which prefers to remain anonymous, is
also highly regarded for the excellence of its software, but represents a very different

1 Now at the University of Washington.
2 Now part of the Loral Company.

4

segment of industry from that of the three primary organizations. The results of this
investigation have been documented and are available from LLNL [4].

3. Common Principles

Although the areas of emphasis among the three sources of information (standards,
experts and organizations) tend to be quite different, no substantial areas of
disagreement were found, providing considerable confidence in the results of the study
as applied to reactor protection systems and other safety-critical applications. Some
broad, shared principles are given in this section. More detailed recommendations can
be found in Section 4.

3.1. Safety Is a System Problem

This principle is generally accepted, but the implications for designers and regulators
deserve some comment. Reactor protection systems are designed using the principles of
diversity and defense-in-depth. The first implies that several different physical
properties of the reactor are monitored for possible deviations from normality. Different
logical combinations of sensed parameters are used to indicate problems, and different
physical methods of response are used to prevent or mitigate failures. Thus, during an
event or accident, a number of diverse signals that follow diverse paths through the
equipment will cause reactor trip, core cooling, or containment isolation.

The second principle means that in typical reactor I&C designs there are multiple
echelons of defense: the control and monitoring system is designed to keep the reactor
out of trouble in the first place; the reactor trip system is designed to shut the reactor
down when the operating envelope is exceeded; the safety parameter display system
and manual controls are designed to provide enough information and capability for
operator response; and the engineered safety features actuation system will actuate the
emergency core cooling, containment isolation, and cooling systems to cool the core and
maintain containment integrity when required. At the physical barrier level, the core
cladding is designed to prevent the release of radioactive material to the coolant; the
pressure vessel and reactor coolant pressure boundary are designed to prevent the
release of the coolant; and the containment is designed to prevent the release of
radioactive material if the reactor coolant pressure boundary fails.

This discussion has some serious implications for software design. A balance should
exist between the general architecture of the protection system and the software
contained within it, so that functions are carried out at the most effective location within
that architecture. For example, it is required by law that reactor protection systems have
no single point of failure, so that multiple, redundant computer processors are required
which must be resistant to simultaneous failure. Since computer systems can fail either
because of hardware or software failures, a serious new concern (common-mode
software failure) now exists where none existed before. A system-level response to this
concern is to use the system architecture to provide defense-in-depth (instead of
attempting some form of n-version programming). An alternative is to ensure sufficient
diversity among programs so that several programs do not execute almost-identical

5

sequences of instructions on identical inputs, as faults in the programs can lead to
common-mode failures within redundant sets of digital processors.

3.2. Risk-Based Design

No company has unlimited resources—money, time, and (perhaps most important)
highly qualified talent are all finite. It is also generally true that some portions of a
software system have higher risk (in terms of the consequences of failure) than others.
Indeed, it is frequently good practice to design software so that those portions whose
failure can lead to the most adverse consequences are small, isolated and confined. Such
software can be termed a “safety kernel.”

Risk-based design means that a formal risk analysis [5] is performed to identify the
most risky portions of the software, to design both the overall protection system and its
software to isolate and confine risk, and to concentrate resources on the areas of highest
risk.

3.3. An Understanding of Complexity

The term “complexity” may be applied to many aspects of the software development
process and products, and some of these are naturally more important than others. For
the purposes of this paper, three types of complexity are recognized: functional
complexity, structural (or design) complexity, and code complexity, with the caveat that
none of the three have absolute definitions.

Functional complexity refers to the difficulty of the problem being solved—the functions
that the software is expected to provide, and the interactions among those functions.
This is very difficult to measure, so may receive insufficient attention.

Structural (or design) complexity refers to the complexity of the software architecture
and design. The design must of course be sufficient to cover all the functional
requirements, but should not be more complex than necessary.

Code complexity refers to the internal complexity of the code modules. This is the easiest
to measure, so generally receives the largest share of attention.

The fundamental issue is that complexity becomes a problem when it decreases the
understandability or the verifiability of the computer system. No complexity aspect can
be ignored, since concentrating on a single aspect just encourages designers to shift
complexity elsewhere. For example, demanding that code modules have cyclomatic
complexity metric less than ten is likely to result in an overly complex structure of
modules, each of which has cyclomatic complexity metric less than ten.

3.4. Commitment to Quality

Perhaps the most outstanding shared characteristic of the organizations interviewed
was an understanding of, and a top-to-bottom commitment to, the production of quality
software. All three organizations demonstrated in various ways their pride in the
quality of the software they build, and reward their people accordingly.

6

Quality did not come easily or painlessly. Current levels of achievement have taken a
decade or more to reach. Mistakes have been made, but the attitude is “Why did we
make the mistake?” and “How can we avoid it in the future?” rather than “Who shall
we blame this time?”

Finally, none of the three organizations is satisfied with its current status. Instead,
continuous deliberate planned quality improvement appears to have become an integral
part of their corporate cultures.

3.5. Multi-Level Evaluation

It is well accepted, at least among software practitioners, that there is no “silver bullet”
[6] that can be used to magically produce reliable software. There is likewise no silver
bullet for regulators to use in satisfying themselves that a software-based protection
system is safe.

One of the principal results from the work at LLNL is the belief that assessing the safety
of any software system involves at least three levels of evaluation: the development
company and its culture, the specific development process for the product under
review, and the software and documentary products of the development process.

This approach attempts to assure safety through the cumulative weight of diverse forms
of evidence obtained primarily during the development process. It provides a
qualitative argument for safety, in contrast to a quantitative statistical assessment of the
safety of the software system, such as the probability of failures per demand (f/d). This
appears to be the best that can be done with the current state of software technology. No
guarantee can be given of absolute safety—but that is true of all technologies.

Since much of the evidence available is qualitative in nature, it may be quite difficult to
calculate an accurate measure of safety, although crude bounds may be possible. That
is, it may not be possible to calculate the probability of an accident due to software
failure to within a factor of two, but it may be possible to show that the probability is
less than, say, 10-3 or 10-4 f/d, and add a well-founded belief through the weight of
evidence that the probability is much lower than 10-3 f/d. This may be satisfactory if
backed up by “an intellectually convincing argument.”3

4. Design Factors

Given the failure of magic, the lack of “silver bullets,” and the limitations of quantitative
reasoning, confidence in the quality of any software product can only be acquired
through years of proven successful use or a preponderance of a variety of evidence. The
first alternative is unattractive (and most likely unattainable) when safety is important
and is unlikely to exist in the rapidly changing computer industry. This leaves the
challenging alternative of evaluating multiple factors relating to the software
development organization, design process, and software product. Success in other

3 Our thanks to John Rushby for this phrase.

7

assessment arenas, such as TickIT [7] in the United Kingdom, provides additional
confidence in this approach.

The research reported here has identified a number of design factors that can serve as
the basis for a safety assessment. Supporting evidence comes from standards, expert
opinion as given in the workshop and the technical literature, and the best current
industry practice. Positive and negative design factors have been identified. They are
listed here under five headings: general, management, process, product, and negative
factors.

4.1. General Design Factors

The factors listed here relate generally to the development of safety-critical software.

• All levels of the development organization demonstrate a commitment to
quality.

• There is longevity in personnel, policy and process which provides stability in
organizational culture and continuous improvement over many years.

• Configuration management is implemented rigorously and used extensively
during all life cycle phases and for all life cycle products, including test, verification and
validation (V&V) and quality assurance (QA) products.

• Testing, verification and validation, and quality assurance activities are
independent from the development activities.

• The test team is involved from the very beginning of software development, to
assure that the requirements are testable, to assure that the software to be developed
employs design features that are within the capability of the test tools, and to provide
input to the test cases, including test data and operational profiles.

• The test team and the V&V team include subject area specialists as well as
software experts.

• Reviews, walkthroughs, and inspections are used at all stages of development
and for all products, including testing, V&V, and QA products.

• Continuous process improvement is a corporate way of life.

• The organization has long-term experience developing safety-critical
applications.

• Software is one of the main businesses of the organization, and top management
understands the process of software development.

• The organization has a goal of defect-free software, and spends the energy and
resources to come as close to realizing the goal as humanly possible.

8

• Quality is built in. It is not possible to “test in” quality. Instead, quality must be
designed into the product and that fact should be demonstrated by testing, V&V, and
QA activities.

4.2. Management Design Factors

The factors listed here relate to the organization’s management of software
development efforts. The underlying principle is an intelligent, deliberate commitment
to quality.

4.2.1. General Management Design Factors

• Vendors, products, and services obtained from others are certified to the level
required to support safety-critical applications.

• The organization monitors, understands, and adapts to the changing
environment in the computer industry.

4.2.2. Process Control Design Factors

• The organization has a well-defined, detailed software development process
model.

• The software development process is stabilized through measurement, feedback,
and gradual improvement.

• Process improvement occurs in two stages: a stabilization stage to provide a firm
foundation for measurement of the effects of one (or at most a few) changes, which in
turn is followed by measurement of the stabilized process outputs.

• Process data which is appropriate to the maturity of the organization is collected,
understood, and used as the basis for process improvement.

4.2.3. Management Action Design Factors

• The organization’s reward structure matches its commitment to quality, rather
than undercutting it by primarily rewarding the meeting of budget and schedule
targets.

• The organization’s management actually uses its process models.

• Management predicts the effect of process changes through its process model,
and measures results to obtain feedback on the actual effect of changes. In the language
of control theory, the measurement lag would make an extremely sluggish system or an
unstable one without the anticipation provided by predictions.

• Management has a successful track record planning, allocating resources, and
meeting schedules within cost and quality constraints.

9

• Management actively identifies, analyzes, and manages business, technical and
safety risks.

• Management abandons methods that do not work. (This may seem obvious, but
abandoning an inappropriate “improvement” can be a career risk in some
organizations.)

• Management ensures the planning, production, and control of documentation.
Because documentation tends to be neglected under stress, this serves as a sensitive
indicator of management commitment.

• Management invites external review.

• Management understands that improvement takes time—typically, it takes about
two years for a process change to become stabilized. Impatience and the search for
short-term gains is not a virtue.

4.2.4. Personnel Design Factors

• Programming skill is not enough when safety is critical—some people must be
skilled in the problem domain.

• It is well recognized that the single greatest factor in assuring quality software is
the knowledge, skill, and intellectual ability of the technical staff.

• The greatest single obstacle to producing high-quality software is inaccurate
interpersonal communications. As a corollary, project teams should be kept small (6–8
people).

4.3. Process Design Factors

The factors listed here relate to both management and technical aspects of the software
development process. The underlying principle is a deliberate planned approach to
software development.

4.3.1. General Process Design Factors

• Reviews, walkthroughs, and inspections are used at all stages of development
and for all products, including code, development documents, V&V products, and QA
products.

• Resource investments are targeted throughout the process life cycle according to
safety and reliability requirements.

4.3.2. Technical Planning Design Factors

• An appropriate life cycle model is deliberately chosen and used.

• Life cycle activities are chosen to promote early detection of errors.

10

• The software architecture is chosen to isolate and confine risks, and the software
elements are managed appropriately according to risk.

4.3.3. Requirements Specification Design Factors

• Requirements are stable. For a reactor protection system, unstable requirements
reflect inadequate system design.

• Requirements are analyzed to understand their implications: to detect
inconsistencies, unneeded but expensive specifications, over-specification, and
requirements that may be extremely difficult or impossible to fulfill; and to ensure that
the requirements are correctly translated from application-specific terminology to
software-specific terminology.

• Requirements are validated against the system design and the safety analysis
report.

• Prototyping and simulation are used in appropriate ways to refine requirements,
test design approaches, and demonstrate system performance.

• Requirements are written to be testable.

• The requirements analyst prepares and documents a well-constructed argument
as to why the requirements are correct and complete.

4.3.4. Design Specification Design Factors

• Safety-critical software components are identified early in the design process so
that sufficient resources can be directed to them.

• A design philosophy suitable for safety-critical software is used. In particular,
“risky” practices are avoided.

• An appropriate level of complexity is defined for the product and documented
practices are followed that control this complexity.

• The product is designed to permit easy understanding, testing, and verification.

• The designer presents and documents a well-constructed argument as to why the
design is correct, complete, reliable, and safe.

4.3.5. Software Quality Assurance Design Factors

• The software quality assurance effort is organizationally independent of the
development organization.

• Quality is built in. It cannot easily be retrofitted, and cannot be “tested in.”

• Defect tracking is taken seriously, is carried out uniformly and consistently, and
is statistically valid.

11

• The root causes of defects are determined, and appropriate corrective actions are
initiated to reduce the probability of similar errors in the future.

4.3.6. Safety Design Factors

• Hazards analysis is used as part of the development process. Hazards can be
introduced by the selection of design approaches, certain hardware, software tools, or
the use of software itself as a solution to a safety problem.

• System diversity is used to improve reliability and safety, and the software is
designed to be an appropriate part of the system.

• The safety system of which software is a part may be circumvented, turned off,
or driven into failure by operator actions. Neither the system nor the software can be
expected to prevent these problems. These implications are factored into the software
design.

• Reliability in the order of 10-5 to 10-6 failures per demand4 cannot be assured by
any known method of implementation or testing. The software portion of the system
must either be designed in such a way that these levels of reliability are not required, or
the inability to quantify reliability at these levels must be accepted.

4.3.7. Testing Design Factors

• Testing is carried out at multiple levels: unit, subsystem, and system.

• The software testing effort is organizationally independent of the development
organization.

• Testing has its own life cycle, which is planned, designed, implemented, and
followed in parallel to the development life cycle.

• Testing goals do not exceed the current practical limitation of about 10-3 to 10-4

failures per demand.

4.3.8. Verification and Validation Design Factors

• The software verification and validation effort is organizationally independent of
the development organization.

• Requirements validation is performed.

• V&V is planned early in the life cycle, and the V&V plan is peer-reviewed.

• The software product is designed to permit effective verification and validation.

4.4. Product Design Factors

4 Roughly equivalent to 10-8 to 10-9 failures per year in continuously operating vehicles such as aircraft.

12

The half dozen factors listed below are aimed at creating a predictable, verifiable
software system. The underlying principles are simplicity and determinism. The
presence of these factors is considered a positive indication of lowered complexity or
easier error detection.

• No interrupts. The use of interrupts, beyond a simple clock interrupt, is
considered a higher-risk implementation method because of the extra care required to
ensure correct synchronization between interrupt code and interrupted code, and to
ensure that interrupted code is correctly resumed.

• No multi-tasking. Multi-tasking requires context switching and task management
in addition to the complications attendant upon using interrupts.

• Simple loop design. A single loop program structure is the simplest program
organization capable of continuous operation.

• Deterministic predictable timing. Evidence should exist that software product
timing is a predictable function of load, and that load is limited by design.

• No pointers. The use of explicit pointers (addresses) of data has been taken by
some as a risky practice. The potential exists for errors in programmer-directed address
arithmetic which would not exist if named variables were used and the addresses were
computed automatically by compiler.

• Strong data typing. Data typing permits compilers to detect data misuse errors
(e.g., using an integer as if it were a floating point number). This class of error
represents a significant proportion of all errors made, and strong data typing with good
compilers almost eliminates it.

4.5. Negative Factors

The presence of any of these factors provides ample justification for caution and concern
by the regulator. A more thorough investigation may well be in order.

• High turnover. The most obvious implication of high turnover is that building a
team of high-quality people with a team memory is impossible. Less obvious is the fact
that high turnover is a comment (by software engineers and managers who leave) on
the competence of management that is left behind. It should not be ignored.

• Projects are schedule-driven. The first victims of a missed deadline are usually
quality assurance and documentation. The next victim is the testing program. A
“deliver at all costs” mentality is cause for concern.

• Organizational process history is short or lacking. The research results are explicit
about the length of time it takes to build a quality software organization.

• Management cannot enforce stable requirements. Stable and complete requirements
are necessary for quality software products, but the role of management in ensuring this
cannot be emphasized enough. Not only must management demand that requirements

13

be locked down, but management itself must not be the source of requirements
thrashing. Requirements instability and weak management control are indicators of
potential failures.

• Management has a record of failing to meet predicted cost, schedule, and quality goals for
products. This is typically an indication of management by chaos or paradoxically,
schedule-driven rather than quality-driven development. Schedule- and budget-driven
development schemes often fail to meet delivery schedules because of product non-
performance problems. Something is delivered, but it is not the contracted-for product.
A record of failing to meet cost, schedule, and quality goals should be taken seriously as
an indicator of deeper troubles.

• The organization fails to track errors and defect causes. An organization’s record of
errors, causes, and corrective actions is its won-loss track record. No record, or a
haphazard record, should be taken by default as meaning a bad record.

• The effort is underfunded. Several of the companies interviewed suggested that
most large government software contracts are underfunded by at least a factor of two
with the expectation that more funds can be obtained later by litigation, contract
expansion, or cost overrun procedures. Whatever the reason, underfunding results in
staff transients and failures to carry out “non-essential” but vital activities such as
quality assurance, documentation, and V&V. While it may be difficult for an outside
reviewer to estimate what a correct funding profile should be, this negative factor is
very real.

• The organization exhibits “kill the messenger” syndrome. Several companies
interviewed emphasized the need for administrative procedures by which bearers of
bad tidings could unburden themselves without jeopardizing their careers. They noted
that organizations without these mechanisms were often the last to know about internal
problems.

5. Experiences Developing Highly Reliable Software

The companies interviewed were very generous in supplying data on their experiences
in developing highly reliable software, a portion of which is presented below. The data
is from specific projects in specific companies, and may or may not be applicable to
other projects within the companies or to other companies. Interpretation of the data is
the responsibility of the authors.

Figure 1, from Computer Sciences Corporation, shows the percentage of different
classes of errors detected during one project by different methods of testing. Five levels
of testing were used, referred to as Level 0 through Level 4. Errors detected were placed
in six classes.

Level 0 testing consisted of peer reviews, design walkthroughs, code walkthroughs, and
documentation walkthroughs. Level 1 testing consisted of unit testing, level 2 of
component testing, level 3 of program and subsystem testing, and level 4 of complete
system testing.

14

The column labeled “total system errors” shows the approximate cumulative percent of
all errors discovered by the end of each level of testing. The remaining six columns
show the approximate percent of each class of error found by each level of testing. For
example, 70% of design errors were found during level 0 testing, while 50% of interface
errors were found during level 2 testing.

The information given in this figure plus other information from CSC that is discussed
in reference [4] support the statements made in 4.3.7. above.

Figure 2 provides a history of errors discovered by the IBM/FSC on-board shuttle
project. IBM/FSC employs a rigorous method of error tracking. Each error discovered
during development or operation is traced back to the time when the error was placed
in the code, and counted against that code release. Since a great deal of code is reused
from one shuttle flight to another, this tracking enables FSC to determine the exact time
the error was inserted into the code, and to determine the reason this occurred.

Errors are classed as early detection, independent verification, and product. Early
detection errors are those detected before a new system build occurs. Independent
verification errors are those errors detected after a system build occurs but before the
new build is delivered to the customer. Product errors are those errors detected by the
customer.

Figure 2 must be read carefully. Approximately one product is released per year, and
errors are counted against that release as long as they can be traced back to the release.
This means, for example, that a version released in 1985 has been counting product
errors for 8–9 years, while a version released in 1993 has barely begun counting product
errors. The result is that the product error curve may be somewhat biased. However,
on-board shuttle systems within the past five years have shown virtually no errors
discovered after first flight usage. The number of early detection errors in each release
and the number of process errors in each release do not have this bias since, by
definition, these error counts do not change after release. The information presented in
Figure 2 together with the discussion of other information obtained from the IBM/FSC
on-board shuttle project provided much of the basis for the Management Design Factors
in Section 4.2. It is important to point out that while the total on-board software
program is on the order of 500 KLOC the individual builds (product releases) were
usually in the range of 5 to 50 KLOC, which is essentially equivalent to the range for
individual software systems for nuclear power plants.

Figure 3, also from IBM/FSC, provides one indication of the cost of high reliability. The
curve is derived from historical data on the shuttle project, and shows that the amount
of effort which must be devoted specifically to the independent V&V (IV&V) effort for a
project can be estimated from the criticality of the project, measured by the required
product error rate in terms of errors per thousand source lines of code (KSLOC).
“Ordinary” products can be produced by devoting approximately 10% of the
development cost to IV&V, resulting in about one error per KLOC in the delivered code.
Reducing error rates below this requires much larger investments in money, time, and

15

labor. To achieve a delivered error rate of 0.1/KLOC, approximately 40% of the project
budget must be spent on IV&V.

The information presented in this figure plus discussions with all three organizations
provided valuable input into the importance of Management Action Design Factors
with respect to planning for and allocating resources for the development of safety-
critical software.

6. A Possible Approach to Assuring Safe Software

Figure 4 resulted from a discussion between the authors and Victor Basili, University of
Maryland, in which the general theme of the discussion was the intellectual activities
involved in the development of software, in particular reading and the need for some
form of reading protocols for the different roles in software development. The figure is
considered speculative. In this approach, each phase of a life cycle would be thought of
as containing two parts: a construction part and an analysis part. The construction
portion consists of the usual life cycle activities of requirements, design, code,
installation, and operation. The analysis portion consists of all activities directed to
ensuring the correctness of the construction activities.

Analysis can be error-based or phase-based. The figure shows the analysis activity that
might occur after the requirements specification has been constructed. There would be a
similar activity after all other life cycle phases. The figure shows two types of analysis
taking place on the specification. These analyses may be of any type; in the example, it
is assumed that models will be developed. The first type of analysis looks for errors.
The other form of analysis is based on the specific life cycle phase under consideration.
For example, an initial test plan can be written, and an initial attempt at a software
design can be produced. If these can be done in a reasonable manner, confidence in the
requirements specification is increased.

In the approach suggested here, an audit team could examine the specification and the
various analyses to be sure they are done correctly. One set of products of the audit will
be risk analyses. Three are suggested here: financial, schedule, and technology. These
risk analyses will be kept, and used as input to the audit of the next phase; that audit
will pay special attention to how the risks were handled by the construction team. In
this example, suppose that the audit of the requirements specification determines that
there is a significant risk that the schedule cannot be met. This will be documented.
After the design specification has been completed and analyzed, the design audit team
will want to know what was done to address this schedule risk. An additional risk
analysis will be done on the design; perhaps the design is complex, requiring new
workstation technology. This will be documented, and used as input to the next phase
audit, and so on.

7. Conclusions

It is certainly true that unsafe software has been created, and will probably be created in
the future. It is equally true that very good software has been created, and will continue
to be created in the future. As with any technology controlling a safety-critical

16

application, software has contributed to death and injury [8], but it is somewhat
surprising how rare this has been. Why?

The thesis presented in this paper is that much of the difference between success and
failure can be attributed to the knowledge, understanding, intelligence, and care of the
individuals and companies involved in the development of safety-critical software. By
combining the best from theory and practice it is possible to isolate a number of factors
that distinguish the good from the bad.

There is a great deal of emphasis in the literature, and in conferences such as this one,
on the negative consequences of software failures in safety-critical applications, and this
is appropriate. However, there are also several balancing, positive factors which
deserve equal emphasis. In particular, software does not wear out, potentially can be
used to identify and compensate for hardware failures, and potentially can provide
much greater control to operators during unexpected events. These factors should be
carefully evaluated on a case-by-case basis to determine the suitability of software in
each plant application.

The challenge faced by software developers is to use software safely to increase the
reliability of the application, while the challenge for the NRC evaluator is to assure that
this is done. The research conducted as part of this contractual effort suggests that
convincing evidence can be obtained in practice that reliable safety-critical software is
being or has been developed. However, neither the development of such software nor
the effort required to certify it for safety-critical usage is easy.

References

1. “On a plateau after 50 years,” Nuclear Engineering International 38, #467 (June
1993), 18–24.

2. Debra Sparkman, “Standards and practices for reliable safety-related software
systems,” Proc. Third International Symposium on Software Reliability Engineering,
IEEE Computer Society (October 1993), 318–328.

3. J. Dennis Lawrence, “Workshop on developing safe software: final report,”
UCRL-ID-113438, Lawrence Livermore National Laboratory, Livermore, CA (November
30, 1992).

4. J. Dennis Lawrence and Warren L. Persons, “A survey of industry practices in
developing high-integrity software,” Lawrence Livermore National Laboratory,
Livermore, CA, in prep.

5. Robert N. Charette, Software Engineering Risk Analysis and Management, McGraw-
Hill (1989).

6. Frederick P. Brooks, “No silver bullet: essence and accidents of software
engineering,” IEEE Computer 20, 4 (April 1987), 10–19.

17

7. “Guide to software quality management system construction and certification,”
TickIT Project Office, London (February 28, 1992).

8. Nancy G. Leveson and Clark S. Turner, “An investigation of the Therac-25
accidents,” IEEE Computer 26, 7 (July 1993), 18–41.

Error Classes

Testing
Level

Total
System
Errors

Design
Errors

Coding
Errors

MMI
Errors

Interface
Errors

Database
Errors

Performance
Errors

0 50-70% ~70% ~10% ~15% ~10% ~10% ~5%
1 70-80% ~20% ~75% ~50% ~10% ~50% ~5%
2 80-90% ~5% ~10% ~15% ~50% ~30% ~20%
3 90-95% ~4% ~2% ~15% ~20% ~5% ~50%
4 95-99% ~2% ~4% ~9% ~4% ~19%

Figure 1. Percent of Errors Found by Different Levels of Testing

18

19
76

19
77

19
78

19
79

19
80

19
81

19
82

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

ERRORS PER KSLOC — NEW AND CHANGED

01
0

2030

E
ar

ly
 D

e
te

ct
io

n
In

d
ep

en
de

nt
 V

er
ifi

ca
tio

n
P

ro
du

ct
 E

rr
or

s

E
st

im
at

ed
 T

o
ta

l I
ns

er
te

d
E

rr
o

rs

E
ar

ly
 D

at
a

Is

Le
ss

 D
e

ta
ile

d

E
a

rly
 P

ro
ce

ss

E
rr

o
r

R
a

te
 is

 8

E
rr

o
rs

 p
er

 K
L

O
C

In
se

rt
ed

 E
rr

or

In
d

us
tr

y
B

e
st

 =
 1

1

S
o

ftw
ar

e
S

ys
te

m

D
ev

e
lo

pm
en

t
M

a
in

te
na

n
ce

Fig. 2. On-Board Shuttle Software Error Measurements

19

203040 10

1
2

3
4

P
ro

d
u

ct
 E

rr
o

r
R

at
e

IV
&

V
 %

 o
f

P
ro

je
ct

La

bo
r

C
R

IT
IC

A
LI

T
Y

D
es

ir
ed

 Q
u

al
it

y
(P

ro
d

u
ct

 E
rr

o
r

R
at

e)

.1
/K

S
LO

C

.5
/K

S
LO

C

1/
K

S
LO

C

Fig. 3. Software Criticality vs. Cost for Early Development Phase of Large Software Systems

20

R
eq

ui
re

m
en

t
C

on
st

ru
ct

io
n

D
es

ig
n

C
on

st
ru

ct
io

n

E
rr

or
 B

as
ed

A

na
ly

si
s

P
ha

se
 B

as
ed

A

na
ly

si
s

Audit Team

S
af

et
y

M
od

el

H
az

ar
ds

A

na
ly

si
s

T
es

t P
la

n

S
W

 D
es

ig
n

A
na

ly
si

s
R

is
k

A
na

ly
si

s

F
in

an
ci

al

S
ch

ed
ul

e

T
ec

hn
ol

og
y

T
he

se
 m

ay
 b

e
fo

rm
al

 m
od

el
s,

bu

t a
re

 li
m

ite
d

to

sp
ec

ifi
c

as
pe

ct
s

In
pu

ts
 to

ne

xt
 p

ha
se

au

di
t

Fig. 4. Life Cycle Phase Construction and Analysis Activities

